UNIFORM CLT FOR MARKOV CHAINS WITH A COUNTABLE STATE SPACE

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform CLT for Markov chains with a countable state space

Let (S,G, P ) be a probability space and let F be a set of measurable functions on S with an envelope function F finite everywhere. Let X1, X2, ... be a strictly stationary sequence of random variables with distribution P , and define the empirical measures Pn, based on {Xi}, as Pn = n−1 ∑n i=1 δXi . We say the uniform CLT holds over F , if n 1 2 (Pn − P ) converges in law, in the space l∞(F ) ...

متن کامل

The CLT for Markov chains with a countable state space embedded in the space lp

We nd necessary and su cient conditions for the CLT for Markov chains with a countable state space embedded in the space lp for p¿1. This result is an extension of the uniform CLT over the family of indicator functions in Levental (Stochastic Processes Appl. 34 (1990) 245–253), where the result is equivalent to our case p=1. A similar extension for the uniform CLT over a family of possibly unbo...

متن کامل

Ergodic Theory for Countable State Space Markov Chains

Here we want to see to what extent the results from Doeblin’s theory for finite state spaces extend to the case when the state space is countably infinite. Throughout we will use π to denote the row vector whose jth component is πj = ( E[ρj |X0 = j] )−1. Theorem (A). If j is transient, then πj = 0 = limn→∞(P)ij for all i. Proof. Because P(ρj = ∞|X0 = j) > 0, it is clear that πj = 0. Thus, all t...

متن کامل

Empirical law of the iterated logarithm for Markov chains with a countable state space

We find conditions which are sufficient and nearly necessary for the compact and bounded law of the iterated logarithm for Markov chains with a countable state space.

متن کامل

On Markov Chains with Continuous State Space

In this expository paper, we p r o ve the following theorem, which m a y be of some use in studying Markov chain Monte Carlo methods like hit and run, the Metropolis algorithm, or the Gibbs sampler. Suppose a discrete-time Markov c hain is aperiodic, irreducible, and there is a stationary probability distribution. Then from almost all starting points the distribution of the chain at time n conv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 1997

ISSN: 1027-5487

DOI: 10.11650/twjm/1500406124